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BOUNDARY LAYER FLOW OVER A FINITE FLAT PLATE
WITH A CONSTANT SLIP VELOCITY

Yong Kweon Suh* and Taik Sik Lee**

(Recetved november 23, 1987)

Two-dimensional incompressible laminar flow induced by a constant slip velocity on the surface of a finite flat plate is studied
both analytically and numerically for large Reynolds numbers. It turned out that the thickness of the thin layer downstream of the
trailing edge increases in square root of the distance from the trailing edge. Numerical integration of the boundary layer equations
for the whole flow field confirmed two asymptotic natures of the flow field; near the trailing edge the analytic result is
approached, and far downstream of the plate the jet flow solution is attained.
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1. INTRODUCTION

The problem considered in this paper stems from the need
to investigate the structure of the steady streaming flow near
the rear stagnation point of a bluff body under high-
frequency-oscillations, For instance, when a circular cylinder
submerged in a viscous fluid oscillates horizontally in a high
frequency, the steady motion of the fluid is induced around
the cylinder due to the nonlinear effect of the Navier-Stokes
equations (Schlichting, 1955). The accompanying drift of fluid
elements may have consequences of practical importance,
such as transport of sediment (Batchelor, 1977) around the
piles of offshore structures near the sea bottom (the wave
instead of the cylinder then induces the steady flow motion, in
this case).

The problem is now to solve the flow field with slip veloc-
ity on the cylinder surface, zero velocity in the far-field, and
suitable conditions for symmetry. In this case when Fe is
large, where Re is Reynolds number based on the velocity of
the streaming flow and the radius of the cylinder, there
develop a boundary layer on the surface, thin but thicker than
the Stokes layer, and a thin shear layer (jet flow) along the
horizontal line extended from the rear stagnation point of the
cylinder. The classical boundary layer theory can be applied
for this case for the whole flow field except the small region
near the rear stagnation point.

Stuart (1966) presented the series solution for this problem,
but he stated that the solution seemed unlikely to converge
near that point. Duck and Smith (1979), in an attempt to find
out the reason for the discrepancy between the theoretical
and experimental results for the streaming problem, consid-
ered the oscillating cylinder in a large tank. Their series
solution was also insufficient to resolve the detailed flow field
near that point. They showed a rigorous study concerning the
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impact of the jet-like boundary layer in the earlier paper
(Smith and Duck, 1977), and presented a conjectured flow
pattern during the collision of the opposing jets.

Difficulties associated with the analytic approach to this
problem are; first, the slip velocity vanishes at the rear
stagnation point resulting in the nonlinearity in the governing
equations for the local flow field and the complexity in
representing the velocity profile at the point, and second, the
fluid elements turn sharply through the corner which may
even cast doubt about the validity of the double deck struc-
ture applied by Smith and Duck (1977).

As a first step to resolve that problem, we simplify the
geometry and the boundary conditions to avoid the above
difficulties. First, the slip velocity is taken constant through-
out the surface, and second, the cylinder is replaced by a flat
plate with a finite length. Thus the problem now becomes to
solve two-dimensional incompressible laminar flow induced
by a constant slip velocity on the surface of a finite flat plate,
where the plate is motionless.

According to the general boundary layer theory, it is
known that whenever the boundary layer meets an abrupt
change in the boundary condition it responds to it through a
thin layer near the surface of the body ; see (Straford, 1954)
and (Curle, 1981) for the change in the pressure gradient,
(Goldstein, 1930) for the change in the surface condition, and
(Suh, 1986) for a corner problem. Goldstein (1930) studied the
uniform flow past a finite flat plate, and showed that the
thickness of the thin layer developed downstream of the
trailing edge increases like O(x/"?) and that the governing
equation for this region is non-linear, where x, is measured
from the trailing edge along the streamwise direction. In his
solution, however, the normal component of velocity becomes
infinite at x,=0". This singularity actually became the basis
for the foundation of the triple deck theory (Smith, 1982). The
lower deck, which corresponds to the thin region of O(x}")
for small x,, is governed by the non-linear equation. This
non-linearity comes from the fact that the velocity on the
surface is zero up to the trailing edge at which the streamwise
velocity increases abruptly, and thus the convective terms of
the boundary layer equations are balanced by the diffusive
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term and are no longer linearized. In the present problem,
however, there exists a finite amount of velocity on the
surface, and hence the governing equations are expected to be
of linear form, since the solution of the leading order equation
for the thin layer is conjectured to be the slip velocity itself as
is also shown in this paper. Consequently the thickness of the
thin layer may be different in power of x, from that of the
Goldstein’s problem.

On the other hand, intitutively it is expected that the flow
mechanism far downstream would resemble that of the well
known jet flow problem (Schlichting, 1955).

The purpose of this study is to investigate the boundary
layer equations subject to a sudden change in a boundary
condition in the restriction that the whole flow field is in-
duced by the slip velocity on the surface. The numerical
method is also used to support the analysis. Section 2 deals
with the formulation of the problem and finds the similarity
solution for the upstream region x, >0. Section 3 is concerned
with the analytic solution near the trailing edge, whereas
section 4 is for the region far downstream. Section 5 shows
the numerical solutions of the boundary layer equations for
the whole region.

2. FORMULATION OF THE
PROBLEM

We consider two-dimensional laminar flow of an incom-
pressible fluid at high Reynolds numbers over a flat plate
with a finite length. The flow otherwise undisturbed is in-
duced by a constant slip velocity U, on the plate occupying
the space o< x*</ as shown in Fig. 1. Then on the assump-
tion that a boundary layer exists, the appropriate governing
equations for determining a steady motion in the boundary
layer are

v m

Ou, Ou_ _dp 1 9'u
u x+1/ = dx+Re B

(2)

where x, v, u, v, and p are non-dimensional variables based

on 2/, U,, and p the density of the fluid. Re is the Reynolds
7

number defined as N’T"l in which y is the kinematic viscos-

ity. The reason for 2/ instead of [ lies only on the algebraic

simplicity. The pressure gradient term % in (2) can be
ignored to the unknown order of L, because y—o0 as y—>©

Re

If.

Fig. 1 Definition of the problem in the physical coordinates

| L

——= Edge of the

u
U= asy=m

- Ru y Boundary Layer

Fig. 2 The coordinate system and the boundary conditions in
dimensionless quantities

asymptotically. Further, we stretch variables y and y as

_ 1 1
v=URe VYT URe Y
upon which (1) and (2) become

du , oV _
oty @

ou , i, ou _ du
VoY T ey

(4)

U

The boundary conditions are

V=0 on Y=0 forall x>0 (5)
u=1 on Y=0f0r0<x£% (6)
ou _ - 1

37 0 on Y =0 for 5 <x (N
u—0 as Y—ooo (8)

The third condition (7) is based on the fact that the flow field
for %<x be symmetric about Y =0. Fig. 2 shows the geome-

try concerned and the boundary conditions in non-
dimensional variables.

We now introduce the similarity variable z as used in the
classical boundary layer flow problem for the flat plate:

a= ©)
Then we put

u=f"(x, 2) (10)
so that

V=2 flx, 2), (a1

V:~%§£:—‘/;—x (f=2f") —v2x fx (12)

where ¥ = Re¢ is the stretched stream function from ¢, and

_o¥ _op __ oy 0
UEGY T e VT T e VT T (13)
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Prime denotes differentiation with respect to z and the
subscript x to x. Substituting (10), (12) and their derivatives
into (4), we obtain

S =2 = f5) (14)

The boundary conditions (5) to (8) then reduce to

fx, 0)=0 (15)
£, 0)=1 for0<x£év (16)
f7(x, 0)=0 for —%—<x (17
flx, z2)—0 as z—x (18)

If the plate were semi-infinite, the whole flow field would be
represented by the similarity solution with one variable z, i.
e., the terms on the right-hand side of (14) would vanish. The
present case, however, is for a finite plate, and thus it is clear
that the similarity solution satisfying all the boundary condi-
tions of (15) to (18) does not exist. Nevertheless, we may
assume that the similarity solution is an exact solution up to

the trailing edge for (14) with (15), (16), and (18). The reason
is that, as far as the governing equations are concerned, they
are of parabolic type and hence the upstream influence of the
flow field due to the transition in the boundary condition
from (16) to (17) is impossible. A very similar situation arises
for the Goldstein’s problem (Goldstein, 1930) in which the
Blasius solution applies to the region between the leading
edge and the trailing edge of the finite flat plate (Van Dyke,
1975).

Thus, let fs(z) be the similarity solution of f(x, z) valid

for 0<x <1 then

<5
J&+ fsfs =0, (19)
fs(0) =0, (20)
f/s(o) :L (21)
fs(z)—0 as z—>x (22)

Solution of (19) satisfying (20) to (22) starts from z ;

fi2) = 3 buz* (23)
_ _ S (0)
bl—].; b2"/1“ 2 k]
It SU ~ o PR A
b= TG & ki =D ki =) bibu o,
(k=23)

where A= —0.31380768:- from the numerical integration.

The following is then obtained :

wo= u(, Y):[f's(z)] = 1Y)
=7
— ‘._,]_'. 3_.v1_ 2 4 Al~ 5 41,1__ 2 &
=14+2Y 3/1Y 6/1 Y +20/1Y +180A Y+
(24)
_ 114274

(25)

3. ASYMPTOTIC SOLUTION NEAR
THE TRAILING EDGE

The solution presented in the preceding section is valid
only up to x:% just downstream of which the boundary

condition changes abruptly from (16) to (17). A typical situa-
tion can be found near the trailing of a finite flat plate subject
to a uniform flow. It is generally noticed that whenever a
sudden change takes place in the boundary condition or in the
pressure gradient the boundary layer responds to it through a
thin viscous layer. For the flow downstream of the trailing
edge of a flat plate subject to a uniform flow, this thin layer
turned out to grow like o(x{®) where x,=x—1 is measured
from the trailing edge(Goldstein, 1930). For the present prob-
lem the exponent of x, for the thin layer thickness is
anticipated to be different from 1/3 because the velocity for

Y =0 remains O(1). We let this expcenent ’17; unknown a

priori. We put

77:%/*. £= (mxs) (26)
and

W=¢m IR, ) (27)
so that

uzgmfZF’(E. 77), (28)

v=—t{n-vF+er-r (29)

Substituting (28), (29) and their derivatives into (4) we get

F '+ (m—1DFF" = (m—20)F F=§(F F ¢ F"F)
(30

The leading order equation of (30) for small £ will take the
same form on the left-hand side and 0 on the right-hand side.
As £—0, p—co for fixed Y, and thus F’ should approach 1
asymptotically for this limit. If the third term of (30) were to
exist, say m¥2, either the first term or the second must
survive for large 7, which due to the intrinsic nature of the
equation may not be possible. Thus we must choose m=2.
Then (30) simply becomes

F/+ FF =¢(F'F'¢— F'Fe) (3D
The boundary condition (5) and (7) are equivalent to

F(& O=F"(& 0 =0 (32)
while the condition #= u, at x:=0 requires that

lﬂi{EF'(E, 7) = U, (33)

Now, by (24), the above condition can be written as
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UmF' (&, 7)=1+£2A7) +Es(—%ﬂ773)

p-mo

_1 1.5 s(LL sz,
+E (AT +E (A & 180A
+ --:ki_fosk(awk) (34)

Thus the appropriate expansion for F (&, 7) must be
F(Ev 77):["0(77)+5F|(7])+52F2(7/)+“' (35)
so that

F+ FoF" =0
Flm +["0F1”* Fo’}‘ﬂ1'+2ﬁ‘o”F1 =0
[“zm+ 1“0F2” 72F0,F2/+3Fn”1*‘2:F1’F1/_2F1["1"

n-1
Fo b FoFn” — nFo Fo' + (4 1) Fy” Fo = Z}l{ka'F'n y

— G+ D ey

...... (36)
The boundary conditions are

Ful0) =F,"(0) = 37N

IUian’(n) =any”

First, the non-linear equation for F, and the corresponding
boundary conditions are satisfied only with

Fo=7 (38)

All the other equations are linear and with F, known take the
form as follows ;

l'nm+7]Fn”'—nFn/:Gn(’?)v (39)

where G,(7) is the known function;

G,,w):'g{m'F'n_k—<k+1>FkF",,fk} (40)

Thus, the complete solution F, () will be sum of the comple-
mentary solution F,,.(7) and the particular solution Fy, (7).
The complementary solution Fr.(7) satisfying the boundary
conditions at » =0 must start from 7. It is found that

~ - ~n 1 =77
P 71h(7/)"ch( 2‘ 2v 2 ) (41)

where M(a, b, §) isthe confluent hypergeometric func-
tion(Abramowitz & Stegun, 1972), and

(d)z é’ (a), S + -

M(a, b, )*1+b5+7(—b—)~» TR N,
in which
() _1I'(at+tn
" I'a)

is the Pochhammer’s symbol. Thus for small 7,

Fron(y) = Cn{1+n77 +nln— 2)77

+n{n—2)(n—4) _6 } (42)

The asymptotic expansion for large 7 is

V_Ant2k=2) ] o g

Floun () en Cp~ (72 2) Th12™ z*k‘?

where %, is integer of 2L Generally for large » the

asymptotic expansion for F,(») must have descending series
starting from 7”*'. Putting the multiplying constant 8 with
double subscript, F.(7) will be

. B n+2 ka2
['71(77)\/31;1 ,8?1. n-k+2 1 (44)

Then (40) can be written for large 7 as

Gn(ri)wm‘é‘o Wnyy™ (45)
where

meZZ:]: {(—(B+Dd™+ke™} (46)

dn= A _:§2 mﬂk,k*l+23[,l—j+z(1-]‘+2) (I—j+1),

(i, j=1, i<k+2, 7<)
€m= 2 Brw—iveBri-jer(b—i+2)([—7+1),

i+j=n-2-m

(i, 720, i<k+1, j=I{+])

and /= »~— k. It turned out that B » vanishes in obtaining the
solutions up to Fi(7). In the following, we shall prove that
this is true for all F. (7). First we prove that w,=1w»1=0.
With m=wxn, (46) becomes

-1
Wn=— ‘221 (/E+1) (ﬂ —k+ 1) (Zk_ n)Bk,leBm kon—k+1,
Replacing 4 by »— £ results in

we= kD) B+ 1) (=28 Br e sBakrs

and thus, for even (#—1) all therms are cancelled out by each

other, and for odd(»%—1) one remaining term when k:g also

vanishes because (#—2k) =0. Now it is clearly seen that
when m=»—1 either Bu.r—i+2 0T Bi.i_,+2 becomes zero because
Be.e=B1,=0 which means that w,_,=0. And thus G, () does
not contain »” and »”'. Next we assume that the particular
solution F’,,(5) for large » starts from 7”4 1. e.,

n-z .
F/np(ﬁ)wlzol’lﬂ?' (47)
upon which and (45), (39) becomes

2 (m+2) (m+1) hgest 2 (m—n) hn= 2 W
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Therefore
U
Rnos=— %’W?ﬁ.?
l’lm: 7v1’"" {?/Um'- (m+2) (m+1) ]’lﬂHZ},
m—n

(m=n—4, n—>5 -, 0).

Consequently it is proved that the assumption (47) is correct
and accordingly An»=0. Thus for large 7,

n+1
Fn(ﬁ)mmZO[)’n,mv'” (48)
Bn,m = }/l@"l'+5m
r(3)
- i Fom— 2/ (n+2k=2y1 if n
o ”r(n,ﬂ,) (=) %l ot D277 F
2
+1--m is even
0; else

where n—2k+1=m, and hn1=0if m=n+1 and m=n.
On the other hand we assume that for small 7

ﬁ‘/yzp:’;iobk”k (49)
Gu= gmﬂ (50)

Then by substituting (49) and (50) into (39), and collecting
coefficients in like powers of 7, we get

(n—k)

f— 1 o —
o= Gy (k) T T R (e D) O 2

It is clear that the second term on the right-hand side of (51)
generates nothing more than the complementary solution if
either hy=0 or b +0. Hence

bo=6:=0

is a compulsory condition to obtain a purely particular solu-
tion ; i.e., F'np starts from 7? for small ». C», is then obtained
from the condition at infinity by

(")

Cp= 14(1 ) 22an (52)

2

Using an explicit expression, we write z for large 5 as
follows ;

U=Fd +EF +E R+ R+ 4 F +
=ao+ £(28127) + 228237 + Ba1)
+ & (435.40° + 2520 + 1730) T+
=(ao+2312Y + 3823 Y2+4£3,4 Y3+-4)
+ & 0 )
+ (B 2852 Y +384s Y2+ 485, Y34 +-)
+ E(Bsn 12802 Y + 3853 Y2 H4B6a Y3+ )

+ (53)

Thus for fixed small £, the expansion (35) is not adequate in
describing the flow field for large Y.

For large Y, the asymptotic expansion (53) suggests us to
expand ¢ as

u=f (Y)Y +EA (V) +EL (V) +- (54)
so that

T=f{Y)+EAY)+E LY+ (55)
It is clear that fo= £ (Y'). Substituting these and their deriva-

tives into (4), we obtain the sequence of first order equations
as follows

SO = S fi=0
Q(forfzr "*fr)”fz) = fow‘i"fl”fl*fl/fx,
3(fo,f4,"fl>”f3) :f1/,/+2(f1”f2*f1,fz,)

VAN AV R (56)
3 (fo’fn"‘fo"fn) :fwrz~ 2+ El (fk”fn—k
e 7 AT RIS

The boundary condition is from matching with (5) for small
Y, ie.,

l);‘[rgf',. (Y)=8n (57)
Solutions of the first 7 terms are obtained :

fi=0
fi= (a1 5+ 4

_/';,::'*:13 asfo
. 1 7Y2 £ 4 !
f4‘“’§{(a2¥ Y2+ (Y +adfo vfﬂ}

D S Y
Js= 6(1’3(&’2 YA+ ash (58)

fs:lilg—(a/z—‘ S/)’%fom‘{’{"l”’(az“ YYQ2Y +a.—ar)
R Y (___,1,, ey 1
+ 18 as}fo + 16 Y+G’G>JD + 16f0

iz :'élli‘a’a(d/z - Y)zfom + {( “*1"0'5+*1‘a’3) Y

2 8
+r et faa—Eama }f"+a 5
2 245 24 34 12 2us3 0 7/0
where
gy =282
)
g, =B
an

8 .
@y = é"ltl +2&2
a

=Bs 1
5 = ) -+ & Qs
Qe = (}1(361 - ’é‘“d%(ls) - '1'1'6‘<3(Iz" as)
1 2

ar= 61_1‘ (B — ‘i—a’a a3) ’*%“(15“ %‘(1’3

The center-line velocity defined as w.= u(x,0) is then
obtained from (42} and (52) :
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Table 1 Asymptotic nature of % and V' obtained by the analytic
method for the boundary layer equations for small x,

X1 u Vv
) -+ 0 fLY) — Y)Y+ YRY)
727\/?7 AT e —QFR—F) —V2x, 3F;
. I+ W 1 A2 FU(n) —7F,) +-- for small »
x>0 1<§>
Do for small 7
ifs/(Y)+xl(2/12_Y)fs" ‘[fs(y)_(Y"Z/I)fs)
| (Y)+- for large Y (Y)]+--- for large Y
(A
Ue™ 20 — 2R g X (59)
k=0 1
(3

Table 1 shows the asymptotic nature of % and V for small x,.

4. SOLUTION FOR THE REGION
FAR DOWNSTREAM ; JET
FLOW THEORY

The only driving condition which generates the fluid
motion is the inhomogeneous boundary condition at y =0, i.e.,
(6). The induced motion of the fluid is then free of that
condition after the trailing edge of the plate, and thus the
flow mechanism far downstream will approach to that of the
jet flow. Schlichting obtained an exact solution for the two-
dimensional laminar jet flow based on the boundary layer
equation (Schlichting, 1953):

_ 13 a/Y”)
¥ =20x! tanh( e (60)
u:%’azx(%{l— Lanhz( -3612;3 )} (61)
where
1/3
(1)
Jo= ’/O‘m u*dyY

Integrating (2) with respect to v from 0 to infinity and
applying the conditions (5). (7), and (8), we obtain

9 [

2 —_
o o u'dy =0 (62)

which states that /, is independent of x, and so x,. At x,=0,
Jo= [Twdy = ["(f)2ay =~ £ (0)=0.627615 (63)
0 0

where the third equality comes from (19). Then

a=0.89046 (64)

5. NUMERICAL SOLUTION OF THE
BOUNDARY LAYER EQUATION

Finite difference technique is used to obtain the solution of

x
(i-1/2,j-1/2)

x

Fig. 3 The mesh system used in the difference formula of the
boundary layer equations

the boundary layer equation with the aid of a computer. The
equation to be solved is (14) and the boundary conditions are
(15) to (18). The mesh system is as shown in Fig. 3. The
method is based on the so called Keller’s box method (Cebeci
and Smith, 1974), but the centeyred difference for the x-deriva-
tives was not successful due to tHe discontinuity in the bound-
ary condition at Y =0 and x,=0. thus we shall use the
backward difference for that. Another feature special to the
present problem is that the boundary condition at infinity
(finite but large in the computational domain) is
homegeneous, so that the algorithm of Thomas cannot be
directly applied. We write

flx, z2y=2—g{x. 2) (65)

Then, the boundary conditions for g(x, z) become

g(x, 0)=0 (66)
g (x. 0)=0 for 0<x§% (67)
g’ (x, 0)=0 for -é—<x (68)
g'(x, z)—1 as z—x© (69)

so that the condition at infinity is now inhomogeneous.
Substituting (65) into (14) and introducing 2(z) yield

g=h (70)
W —gh'+zh' =2x (het gh’ — hah) (71)

The non-linear terms in (71) are linearized by putting for a
function ¢ (g or h)

p=3+(p—
where ¢ stands for the old value of ¢, and by neglecting terms
in multiples of (¢ — ¢) which are assumed to be small. Deriva-
tives in x are resolved by using the backward difference. It

results in

R +ph'+ah+rg=s (72)



BOUNDARY LAYER FLOW OVER A FINITE FLAT PLATE WITH A CONSTANT SLIP VELOCITY 15

where
p:z*é—Zxé

q=2x {hﬁ (h Dj

(1+§J—’;)h

—f%(iz2~'éiz’—hz,<l)—él%’

Using the centered difference for the z-derivatives, (67)
becomes

Ajhj,1+Bj}Zj+le’lj,1+ngj:Ej (73)
where
Aj —1—24]2
Bj:~2+qdz
b
Cj"1+zdw
D;=r
Ej:S

Now we apply centered difference to (70) at the mesh point
(i—5 7— A) marked “X” in Fig. 3;

=gi- 1+ 2 s+ hy-) (74)

Using Thomas algorithm, equation (73) can be expressed as
I’Zj:Rj+th1 1+ Y‘jgj 1 (75)

Substituting (75) into (73) to eliminate /;., and using (74) to
eliminate g; yields

A; +'——(C 'I,H+D )

_ B CGiRin 1 .
h;= 7 7 hia
_GCTatDs 5 (76)
Vs
where
V,=B;+C; 51+1+ £ (CiTim+ D).
By comparing (76) with (75), we obtain
Ei— CiRsa
R;= V,-
A; + (C T,H+D)
S j:"-'~"~ T — (77)
= GCTintDs
T,= v, .
The boundary conditions given by (66) to (69) are
&1 = 0, (78)

0, for O<x£/17

2
= 5 R3+(Ss+ """ ‘3) R:—4R;
I — A Az for %<x
S 1Su(S 22Ty + AR
(79
hy=1, (80)

where J denotes the end of 7. The condition (80) correspond-
ing to (68) is obtained by representing the function 4 (z) near
z=() with a polinomial composed of %, /s, and hs.

The computational procedure is as follows: .
(1) Assume the initial value of g, gx. %, and fx. At x=0 &k
is chosen by

h:{z for 0<z<1
1 for 1<z<z,

where z. is the upper edge of the domain. At all the other
stations of x, the extrapolation from the two previous steps is
used to estimate the initial values.

(2) K;, Bj, -+, E; are calculated.

(3) Starting from =/ -1, R;, S, and T, are obtained by
(77) up to j=1 with ;=1 and S,= T;=0,

4) Then g; and /; are obtained from j=2 to j=J using (74)
and (75) with g, and A given by (78) and (79) or (80) depending
on x.

(5) The procedures (2) to (4) are repeated until | ¢—@|
becomes small enough.

(6) x is increased and the procedure (1) to (5) is repeated.

6. RESULTS AND DISCUSSIONS

Table 2 and Fig. 4 show the center-line velocity u. obtained
by the numerical treatment of the boundary layer equations
in comparison with that obtained by the analytic method, i.e.
(59), and that obtained by the jet flow theory (61). In Table 2,
analytic results are for the first 17 terms of equation (32). x
used in the numerics #1 of Table 2 is 0.001 for 0.:50< x <(.504,
0.002 for 0.504< x < 0.520, 0.005 for 0.520< x <0.550, 0.010 for
0.550 < x < 0.600, and 0.020 for 0.600<x, while that in the
numerics #2 is 0.01 for 0.50< x < 0.54, 0.02 for 0.54< x <0.60, 0.
04 for 0.60<x < 0.68, 0.08 for 0.68< x <0.92, 0.16 for 0.92<x <

02

Fig. 4 Center-line velocity #.; —+—, Numerics; ——, Analytic
result (up to 17 terms of Eq. (32)): ----- , Jet flow theory
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Table 2 Centerline velocity u. obtained by the analytic method,
the numerics, and the jet flow theory

Analytic Numerics Numerics Jet flow
method #1 #2 theory
0.930155 0.936560
5 0.901078 0.900991 0.905756
0.54 0.861692 0.861315 0.864122
0.56 0.832424 0.831733 0.834764
0.59 0.808474 0.807570 0.810408
0.60 0.787959 0.786781 0.789470
0.62 0.769904 0.768919
0.64 0.753728 0.752827 0.755975
0.66 ] 0.739063 0.738184
0.68 0.725764 0.724749 0.728093
0.70 0.713436 0.712342
0.72 0.702335 0.700819
0.74 | 0.692489 0.690065
0.76 | 0.684197 0.679989 0.685708 0.828285
0.78 | 0678008 0.670513
0.80 0.674815 0.661572
(.84 0.645091 0.651869 0.757379
0.92 0.616633 0.623916 0.705867
1.08 0.572192 0.582396 0.633865
1.24 0.538420 0.549910 0.584425
1.56 0.489234 0.505056 0.518447
1.88 } 0.454216 0.471652 0.474803
2.52 | 0.406085 0.428232 0.418173
3.00 0.380659 0.389487
3.80 ‘ 0.349331 0.379119 0.355060
5.08 | 0.315031 0.346395 0.318311
6.36 ‘ 0.291163 0.322495 0.293207
764 0.273197 0.303988 0.274520
8.00 0.268883 0.270055
8.92 0.258976 0.289067 0.259838

Table 3 Distributions of #« obtained by the numerics in compari-
son with those by the jet flow theory for two stations of

x=3.0, and 8.0. -
] at x=3.0 ‘] at x=8.0

z Numerics Jet flow Numerics Jet flow
#1 theory #l theory

0.00 | 0.380659 0.380487 0.268882 0.270055
0.21 0.378310 (.386823 0.267782 0.268915
0.42 0.371377 0.378976 0.264516 0.265532
0.60 | 0.362034 0.368434 0.260072 0.260931
0.90 l .340422 0.344194 0.249591 0.250094
1.20 0.312954 0.313690 0.235840 0.235906
1.50 0.281791 0.279511 0.219599 0.219190
2.10 0.216474 0.209453 0.182941 0.181648
3.00 0.131492 0.121979 0.128055 0.125980
4.20 J 0.060105 0.052680 0.071368 0.069347
540 ¢ 0.025648 0.021334 0.036849 0.035486
7‘204‘1? 0.006726 0.005262 0.012559 0.012181

1.24, 0.32 for 1.24 < x <'1.88, 0.64 for 1.88< x < 2.52, and 1.28 for
2.52=< x. It is noted that the analytic result is very close to the
numerical solution for x smaller than 0.80 at which the
difference is about 2%. On the other hand, the jet flow theory
vields better results as x is increased. At x =3, u. obtained by
the jet flow theory differs from that of the numerics by 2%,
while that at x =8 by 0.4% as is also seen in Table 3.
Figure 5 shows distributions of the streamwise velocities
obtained by numerics. Noteworthy is that the velocity profile
changes abruptly near x =0.5, and for small Y. Shown in Fig.
6 (a) and (b) are stream-lines. it is observed that the fluid
particles are entrained for x < 0.5, and detrained for x >0.5
for moderate and small Y. The value of Y at x =0.5 at which
the normal velocity component V changes its direction is

Yong Kweon Suh and Taik Sik Lee

Y
Fig. 5 Distributions of # obtained by the numerics for four
stations of x=0.5, 0.6, 1.0, and 3.0
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(b) Enlarged view near the plate.

Fig. 6 Streamline patterns

found to be 1.040 as is calculated by the asymptotic equation
shown in Table 1.

The analytic solution obtained in section 4 is studied con-
cerning its convergence. As is shown in Fig. 7 and Fig. 8, the
series (59) seems to diverge for all x,, but it gives more
accurate result for smaller x:. It implies that an optimum
number of terms which gives the most accurate result depend-
ing on x: exists; for ., average of which is found to be 0.
64385 being 0.2% off from that of the numerics 0.64509 (Fig 8
(a)), while at x,=0.50, #=2~11 gives the average u. of (0.5910
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Fig. 7 Center-line velocity u. obtained by the analytic method.
Number of terms included in evaluating (32) are shown in
the end of each curve
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Fig. 8 Nature of the asymptotic series (32). The first K terms
are used to evaluate u. at (a) x,;=0.34, and (b) x,=0.5

being 0.3% off from that of the numerics 0.59272 (Fig. 8(b)).

Figure 9 compares distributions of # obtained by the
numerics with those by the jet flow theory at three stations of
x. It is clearly seen that the two results agree better as x is
increased.

Figure 10 shows the distribution of V for small x,. As is
found by the analytic solution (Table 1), V shifts abruptly at
x=0.5 in the region within the boundary layer which is also
confirmed by the numerics as shown in Fig. 10. This abrupt
shift in ¥ occurrs only at moderate Y. Because of this
discontinuity in V, we may need to construct a smaller region

20

Fig. 9 Distributions of  obtained by the numerics in compari-

son with those by the jet flow theory for three stations of
x=1.0, 3.0, and 8.0
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Fig. 10 Distributions of V obtained by the numerics and the

analytic method for the region very close to the trailing
edge
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Fig. 11 Asymptotic nature of the numerical result for ¥. of the
present problem for large x

near the trailing edge within which the new scheme like the
triple deck (Smith, 1982) can be devised to resolve the singu-
larity. It may be similar to the two deck scheme used by
Smith & Duck (1977) and by Merkin & Smith (1982) whose
problems are concerned with the natural convection so that
the streamwise velocity component vanishes far from the
wall ; the present problem is hence similar to them in this

25
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sense but differs in that the present one contains the finite
amount of velocity at the wall.

Figure 11 shows ¥. defined as ¥w= ¥y., versus x in
log-log scales. ¥ for the numerical result is evaluated at the
upper edge of the computational domain. It is seen that the

power % of equation (60) is attained for large x.
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